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Abstract— Scene understanding via multi-modal large lan-
guage models (MLLMs) and scene forecasting with world mod-
els have advanced the development of autonomous driving. The
former maps visual inputs to driving-specific outputs, neglecting
spatial reasoning and world dynamics. The latter captures
world dynamics, lacking comprehensive scene understanding.
In contrast, humans seamlessly integrate understanding, fore-
casting, and decision-making via multi-modal representations,
avoiding misalignment and complexity. To this end, we propose
OccLLaMA, a unified occupancy-language-action world model
for multi-task learning. It uses semantic occupancy as a uni-
fied and modality-agnostic 3D visual representation, effectively
integrating spatial scene understanding and scene forecast-
ing. We further introduce a novel scene tokenizer tailored
for occupancy, enabling a unified representation manner for
multi-task across understanding and generation. Furthermore,
we enhance LLM, specifically LLaMA, to enable end-to-end
multi-task learning within a unified auto-regressive framework.
Extensive experiments demonstrate that OccLLaMA not only
achieves competitive performance on multi-task,including scene
understanding, occupancy forecasting and motion planning, but
also significantly enhances motion planning performance by the
integration of multi-task learning, showcasing its effectiveness
and potential as a foundation model for autonomous driving.

I. INTRODUCTION

Multi-modal Large Language Models (MLLMs), as foun-
dation models trained on massive internet-scale datasets, of-
fer a new perspective for autonomous driving (AD). MLLMs
combine extensive “world knowledge” with advanced rea-
soning capabilities, which is exactly what traditional AD
models lack [1]. However, fully autonomous driving based
on MLLMs has yet to become a reality. The reason is that
existing MLLMs are good at scene understanding but are
poor at planning specific actions, neglecting the dynamics
of the world and the relations between action and world
dynamics. In contrast, humans possess a world model that
enables them to understand scenes, simulate the future and
plan actions simultaneously. Therefore, exploring how to
construct a human-like world model is essential for advanc-
ing autonomous driving.

There has seen extensive research on world models for
autonomous driving. However, the precise definition of a
world model for autonomous driving remains an open
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behind the left rear truck?

The status of the truck behind the 
left rear truck is parked.
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Are there any cars to the front of me?

Yes.

Please understand the scene and 
plan future 3-second trajectory. 

Narration: The car is driving to the right 
side, because a bus is blocking the 
original path.
Critical object: Notable Objects.
Meta Action: Turn right and keep speed
Trajectory: <waypoint> <occ> ……

Fig. 1: Humans make decisions by simultaneously under-
standing the scene and forecasting future world dynamics
through internal multi-modal representations. Inspired by
this, we propose OccLLaMA, a unified world model inte-
grating occupancy-language-action modalities for multiple
tasks in autonomous driving. Moreover, OccLLaMA con-
structs a human-like motion planning process by integrating
scene understanding as a prerequisite task and alternately
forecasting scenes and planning waypoints. The significantly
enhanced performance achieved by OccLLaMA highlights
the effectiveness of multi-task learning and integration in
improving driving capability.

question. Current world models for autonomous driving
primarily focus on sensor-based prediction tasks, such as
video prediction [2], point cloud prediction [3] and occu-
pancy prediction [4]. Yet these models fail to simultaneously
achieve language reasoning, scene forecasting, and action-
based interaction with the real world, which are precisely
defining attributes of human intelligence. Therefore, we
target at a model capable of unifying vision, language, and
action (VLA) modalities and incorporating advanced spatial-
temporal scene understanding capabilities.

However, two critical challenges must be solved for build-
ing such a VLA world model. The first is to build a general
3D visual representation that facilitates both understanding
and world evolution, and the second is to design a multi-
modal framework capable of accommodating VLA modal-



ities, integrating world modeling, scene understanding and
planning. In recent years, semantic occupancy (Occ) has
gained significant attention as a general 3D visual repre-
sentation. It can capture fine-grained 3D structures while
incorporating high-level semantic information, making it
highly suitable for spatial-semantic alignment. This moti-
vates us to utilize Occ as the intermediate representation,
which smoothly connects world semantics and 3D geometric
representation. On the other hand, MLLMs has been vali-
dated to be poor at spatial understanding. It becomes an
interesting question that whether LLMs can learn spatial-
temporal reasoning by predicting 3D occupancy tokens. This
can potentially open up new possibilities of conducting 4D
scene understanding through LLMs. Moreover, LLMs also
allow for incorporating planning capabilities into next-token
prediction, which is highly promising for a unified and clean
VLA framework.

Based on above observations, we propose OccLLaMA,
an occupancy-language-action generative world model. As
illustrated in Figure 1, OccLLaMA uses semantic occu-
pancy as the 3D visual representation to integrate under-
standing and evolution through an auto-regressive model,
unifying VLA-related tasks including scene understanding,
occupancy forecasting and motion planning. Specifically, we
introduce a general scene tokenizer to efficiently discretize
and reconstruct occupancy scenes, addressing sparsity and
class imbalance. Then, we align occupancy-language-action
modalities into a unified space. Furthermore, we enhance
LLM, specifically LLaMA [5], to perform spatial-temporal
scene understanding and planning on the unified space as a
human-like VLA world model.

We summarize our contributions as follows:
• A unified occupancy-language-action world model, Oc-

cLLaMA, which integrates scene understanding, occu-
pancy forecasting and motion planning tasks within an
auto-regressive framework.

• A general scene tokenizer that efficiently discretizes and
reconstructs occupancy scenes, addressing sparsity and
class imbalance while preserving fine-grained spatial
and semantic details.

• Extensive experiments compared to SOTA methods
from multiple tasks, showing competitive performance
across all different tasks, including scene understanding,
occupancy forecasting, and motion planning.

• A demonstration of the significant improvement in mo-
tion planning through multi-task learning, highlighting
the effectiveness of integrating multiple tasks within a
unified framework.

II. RELATED WORK
A. VLM Model for Autonomous Driving

The advancement of MLLMs has introduced new
paradigms in autonomous driving, particularly in enabling
more explainable driving behavior [6], [7] and improv-
ing generalizability via end-to-end learning frameworks.
DriveGPT4 [8] and CarLLaVA [9] achieve promising re-
sults through the fusion of images and LLMs. However,

these methods, which primarily rely on 2D image data,
could benefit from stronger 3D scene understanding. Om-
niDrive [10] builds upon this by using sparse queries to
generate 3D visual representations, resulting in improved
performance in complex environments and dynamic driving
scenarios. BeVLM [11] employs an adapter module to align
BEV features with LLMs, enhancing spatial understanding
and the accuracy of prediction. Other approaches [12], [7]
utilize both image and LiDAR modalities as inputs but
face challenges in effectively aligning these modalities. In
contrast, Semantic Occupancy provides aligned semantic and
spatial information, which offers a promising solution to the
modality alignment problem.

B. World Model for Autonomous Driving

World models aim to predict future scenes, including
spatial structures and object dynamics, based on agent action
and observation [13]. In autonomous driving, world mod-
els are primarily utilized for generating synthetic training
data and supporting decision-making tasks. Visual world
models [14], [15] using image representations have been
successful in predicting images or videos of driving scenes
and simulating driving environments. Several methods [16],
[17] utilize 3D point cloud representations, while enhancing
the understanding of dynamic, real-world environments by
capturing richer spatial information, but they still lack seman-
tic information. Recent advancements focus on leveraging
multi-modal sensor setups to build more comprehensive
world models. Muvo [18] takes both camera and lidar data
as inputs to learn a sensor-agnostic geometric representation
of the world. BEVWorld [19] combines multi-modal sen-
sor data into a unified BEV space, enabling future scene
prediction using a latent diffusion model. Yet, challenges
persist in aligning features from these different modalities. A
promising direction for future research is the integration of
3D scene representations with semantic understanding, which
could enable more accurate and context-aware predictions.

III. METHOD

As shown in Figure 2, we introduce OccLLaMA, a uni-
fied occupancy-language-action world model with the Scene
Tokenizer (Section III-A) and the Unified World Model
(Section III-B). Furthermore, we present our training strategy
for tokenizer and multi-task learning (Section III-C).

A. Scene Tokenizer

Occupancy data x ∈ RH×W×D represents the ego vehicle
surrounding environment as a voxelized H ×W × D grid,
where each cell is assigned a semantic label. The label set
S includes N − 1 non-air categories Sn and air category oa.

S = {o1, o2, ...oN−1, oa} = {Sn , oa} (1)

Over 90% of the cells are assigned the low-value oa, caus-
ing extreme sparsity and class imbalance. We thus propose
an occupancy-specific VQVAE with a sparse encoder and
decoupled decoder, extending existing methods [4].
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Fig. 2: Overview of the OccLLaMA Architecture. The Scene Tokenizer and Unified World Model are core components
of OccLLaMA. The Scene Tokenizer employs a sparse encoder and decoupled decoder to efficiently tokenize the occupancy
scene, addressing data sparsity and class imbalance. The Unified World Model integrates occupancy-language-action
modalities within a unified discrete auto-regressive framework, supporting multi-task learning in autonomous driving.

Sparse Encoder Inspired by point cloud encoding methods,
we design a sparse encoder for efficient occupancy compres-
sion. Specifically, we construct H ×W pillars by vertically
stacking the occupancy data x ∈ RH×W×D. Within each
pillar, the M non-air cells are modeled as point clouds p,
where each point is defined by its height d ∈ {0, ..., D} and
semantic label l ∈ Sn . This design enables us to sparsify
x into y by representing each pillar as a set P of points p
along Bird-Eye-View (BEV) direction.

x
sparsify−−−−→ y ∈ PH×W = {(dm, lm)}H×W

M (2)

We then aggregate the pseudo point cloud features using
pillar embedding [20], [21] and employ a swin-transformer
block [22] to generate the BEV feature map:

z = E(y) ∈ R
H
r ×W

r ×c (3)

where r is down-sampling rate and c is the feature dimension.
Quantification To obtain discrete tokens, we map z into
a learnable codebook Z = {ẑi}Ki=1 containing K vector
entries. Specifically, the vector quantization (VQ) function
Q(·) replaces each zi to the nearest codebook entry ẑk:

ẑ = Q(z) := arg min
ẑk∈Z

∥zi − ẑk∥2 , zi ∈ z (4)

Decoupled Decoder The decoder backbone reconstructs
dense features f ∈ RH×W×D×C from ẑ via deconvolution
blocks and up-sampling layers [4]. To address class imbal-
ance, we decouple the decoding of the occupancy status and
semantics, where the former indicates whether a voxel is
occupied or empty and the latter specifies the category of
occupied voxels. Specifically, we define a non-air category

on and an occupancy status mask M to obtain decoupled
ground truth of occupancy status xa and semantics xn:

M(o) =

{
True, o ∈ Sn ∨ o = on

False, o = oa
(5)

xa = onM(x) + oaM(x) (6)
xn = xM(x) (7)

Then we instantiate lightweight classification heads to de-
code occupancy status x̂a = ha(f) and semantics x̂n =
hn(f), which are combined to form the final reconstruction
result x̂:

x̂ = x̂aM(x̂a) + x̂nM(x̂a) (8)

Loss The tokenizer loss comprises two components: recon-
struction loss Lr and vector-quantized loss Lvq following
Occworld [4]. The reconstruction loss Lr combines Cross-
Entropy Lce and Lovasz-SoftmaxLls, with decoupled super-
vision for occupancy status and semantics separately.

L = λ1Lr(xn, x̂n) + λ2Lr(xa, x̂a) + Lvq (9)
Lr = Lce + λ3Lls (10)

where λ1, λ2, λ3 serve as balancing factors.

B. Unified World Model

OccLLaMA integrates the understanding and generation of
occupancy-language-action modalities within a unified dis-
crete auto-regressive world model, enabling multi-task joint
learning in autonomous driving. The proposed architecture,
as illustrated in Figure 2, is detailed as follows:
Joint Vocabulary We establish a joint vocabulary V that
integrates multimodal tokens to serve as the foundation



for multi-task learning. Specifically, V includes the fol-
lowing: 1)Language Tokens: We initialize V with the
vocabulary from the pretrained LLM. 2)Occupancy Tokens:
We define {<occ1>,...,<occK>} that correspond to
the vector indices of the codebook Z in Section III-A,
enabling scene reconstruction via tokenizer based on spe-
cific tokens combinations. 3)Action Tokens: Waypoints are
discreted into 256 bins and {<bin1>,...,<bin256>}
are defined to represent fine-grained numerical actions fol-
lowing DriveLM [23]. 4)Special Tokens: We further add
{<occ>,</occ>,<act>,</act>} to delineate modality
boundaries and <que i> as learnable scene queries.
Model Architecture OccLLaMA is constructed based on a
pretrained LLM, comprising an embedding layer, backbone,
and lm-head, with the dimensions expanded to accommodate
V. For occupancy tokens input, we employ a lightweight
projection layer that aligns scene features with language
embedding space as demonstrated in prior work [24]. For
output, all three modalities are converted to the discrete prob-
ability distribution over V. Therefore, Cross-Entropy can be
used as a uniform loss function for multi-task learning.
Spatial-Temporal Attention Language and action modali-
ties are inherently sequential, making the internal tokens nat-
urally suitable for temporal attention implemented via causal
masks in the LLM. However, the occupancy modality lacks
intrinsic contextual dependencies and is typically modeled
with bidirectional attention to capture spatial relationships.
Therefore, we introduce the spatial-temporal attention that
applies temporal attention both within the language and
action modalities, and across different modalities, while
employing spatial attention within the occupancy modality.
Next Token or Scene Prediction Due to the inherent
differences in attention mechanism and the quantity gap
between the occupancy modality and others, the prediction
mechanism operates in two modes: next token or scene
prediction. For language and action modalities, we follow the
standard practice of sampling next token from the predicted
distribution. For occupancy modality, we initialize learnable

Algorithm 1 Next Token or Scene Prediction
Input: Prompt x = {xi}n1 , xi ∈ V
Params: Max Length L, Scene Size S
Output: Completed Reply x

1: Initialize OccLLaMA as M
2: Initialize Queries as q = [<que i> ∀ i ∈ [1, S]]
3: while x−1 ̸= <end> and |x| < L do
4: if x−1 = <occ> then
5: x← x ∪ q
6: x[−S:] ←M(x)[−S:]

7: x← x ∪ </occ>
8: else
9: x← x ∪M(x)−1

10: end if
11: end while
12: return x

queries equal to the number of an occupancy scene tokens,
enabling the prediction of the entire scene distribution in a
single forward pass. The implementation details are provided
in Algorithm 1. This design not only aligns with the
bidirectional dependencies of the occupancy modality but
also significantly reduces inference costs.

C. Training strategy

Scene Tokenizer Training We initally train scene tokenizer
with the objective function defined in Equation (9). After
training, the parameters are frozen and seamlessly integrated
into the downstream training pipeline.
Multi-Task Pretraining During the pretraining stage, we
generate a set of prompt-answer pairs, leveraging historical
4-frame occupancy scenes (occupancy modality), driving
command (language modality) and ego status (action modal-
ity) [25]. These pairs encompass five distinct tasks: 1)Detec-
tion Task: Identifying object categories and 2D positions,
with categories in language modality and positions (nearest
action bin) in action modality. 2)Counting Task: Provid-
ing counts of specific categories, with counts in language
modality. 3)Prediction Task: Predicting the 3-second future
trajectory of specific objects, with positions and trajectory in
action modality. 4)Planning Task: Predicting the 3-second
future trajectory of ego vehicle, with the trajectory in action
modality. 5)Forecasting task: Forecasting the next waypoint
and occupancy scene alternatively, with waypoint in action
modality and scene in occupancy modality.
Instruction Finetuning During the finetuning stage, we
utilize NuScenesQA [26] as the primary language-related
dataset to finetune the pretrained model, aiming to quantita-
tively evaluate its spatial scene understanding capability. Fur-
thermore, we extend the Chain-of-Thought (CoT) of GPT-
Driver [27] by incorporating narration, reasoning, notable
objects, potential effects, driving action, and trajectory, using
the Nu-X and Driving Command datasets [25]. The extension
integrates scene understanding as a prerequisite task for
motion planning, enabling us to explore the interactions
among multiple tasks in Section IV-C.

IV. EXPERIMENTS

A. Experimental Settings

Datasets and Metrics We conduct main experiments on
the NuScenes, utilizing occupancy from Occ3D [28]. And
we involve three language datasets: Nu-X, Command, and
NuScenesQA. Nu-X and Command in Hint-AD [25] provide
diverse linguistic expressions for narration and reasoning on
NuScenes. NuScenesQA [26] is a visual question-answering
dataset covering five categories: existence, counting, query-
object, query-status, and comparison, which are further
classified into H0 and H1 by complexity. For language
tasks, we adopt standard caption metrics, CIDEr, BLEU,
METEOR and Rouge for Nu-X, Accuracy for NuScenesQA
and Command. Additionally, we focus on mIoU and IoU for
the occupancy forecasting task, as well as L2 precision and
collision rate for the motion planning task.



Q: There is a trailer; what status is it? (status)

GT: Parked                 Pred: Parked

Q: Are there any cars? (exist)

GT: Yes                      Pred: Yes

Q: What number of other cars in the same status as the pedestrian that is to the 

front of the trailer? (count)

GT: 3                                                  Pred: 4

Q: The parked thing to the front of the moving truck is what? (object)

GT: Truck                                           Pred: Truck

CoT
Narration: the car accelerates rapidly down the open freeway

Reasoning: to take advantage of the unoccupied space in 

front of it, allowing for a smooth and uninterrupted journey

Notable objects: None

Potential effects: None

Driving action: turn right and accelerate

Trajectory: [(0.04, 4.67), (0.03, 9.38), (0.04, 13.15), (0.01, 

17.97), (-0.06, 22.79), (-0.15, 27.65)]

Narration: the car accelerates on the road

Reasoning: No obstacles in front of the ego vehicle

Notable objects: None

Potential effects: None

Driving action: forward and accelerate

Trajectory: [(0.02, 3.22), (0.04, 5.76), (0.04, 10.28), (0.04, 

14.30), (0.06, 16.88), (0.06, 20.92)]

NuSceneQA

GT Pred

Fig. 3: Qualitative Results of Scene Understanding. OccLLaMA enables scene understanding with spatial reasoning based
on occupancy observation and enhances motion planning as a prerequisite chain-of-thought, as analyzed in Section IV-C.

Method Input Nu-X NuScenesQA Command
C B M R H0 H1 All Acc.

GPT-4o Image +
6-shot examples

19.0 3.95 10.3 24.9 42.0 34.7 37.1 75.4
Gemini 1.5 17.6 3.43 9.3 23.4 40.5 32.9 35.4 80.9

Lidar-LLM Lidar - - - - 53.9 45.7 48.6 -

ADAPT BEV 17.7 2.06 12.8 27.9 51.0 44.2 46.4 79.3
BEV+Adapter 18.6 3.47 11.3 24.5 51.8 45.6 47.7 81.1

BEVDet+MCAN BEV +
bounding boxes

13.2 2.91 10.3 24.5 56.2 46.7 49.9 80.7
TOD3Cap 14.5 2.45 10.5 23.0 53.0 45.1 49.0 78.2

Hint-VAD BEV + inter. 22.4 4.18 13.2 27.6 55.4 48.0 50.5 82.3

Ours Occ 23.8 3.96 12.4 25.7 55.3 51.9 53.0 81.3

TABLE I: Quantitative Comparison of Scene Understanding. OccLLaMA achieves state-of-the-art performance on
NuScenesQA and competitive performance on Nu-X and Command, relying on less occupancy-based observation. The
highest and second-highest performances are indicated by bold and underline, respectively.

Implementation Details We set the language model back-
bone as LLaMA-3.1-8b and the scene tokenizer parameters
as 50× 256× 2048. Scene tokenizer is trained with learning
rate of 10−4, batch size of 4, λ1 = 2, λ2 = 2, and λ3 = 0.5,
while Generative World Model is trained with learning rate
of 10−4 and batch size of 1 in pre-training stage, 5× 10−5

and 4 in each instruction tuning stage. The Scene tokenizer
undergoes 100 epochs on 8 RTX 4090 GPUs, while the
Generative World Model undergoes 10 epochs in the pre-
training stage and 5 epoch in each instruction tuning stage
on 8 V100 GPUs.

B. Single-Task Performance Evaluation

Scene Understanding We first compare the scene un-
derstanding performance of OccLLaMA with the methods

based on different input formats. LidarLLM [29] integrates
point cloud into the language model. ADAPT [6] and
BEV+Adapter [30] rely on BEV features built from images.
BEVDet+MCAN [31] and TOD3Cap [7] further require de-
tection bounding boxes. Hint-AD [25] integrates intermediate
features into the language model. As illustrated in Table I,
OccLLaMA achieves state-of-the-art on the NuScenesQA
benchmark benefiting from the 3D occupancy modality as
input, which enhances its ability to handle spatial reasoning
tasks. Notably, Nu-X contains tasks that depend on raw
categories and attributes absent in occupancy input (e.g.,
traffic signs and object colors), presenting an unfair challenge
to OccLLaMA on Nu-X caption metrics. However, Oc-
cLLaMA still achieves competitive performance on the Nu-X
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Fig. 4: Qualitative Comparison of Occupancy Forecasting. OccLLaMA demonstrates superior long-term forecasting
performance, both static scenes evolution (Zoom In, Left) and dynamic objects motion (Zoom In, Right).

Method Input mIoU(%)↑ IoU(%)↑
Recon. 1s 2s 3s Avg. Recon. 1s 2s 3s Avg.

OccWorld-D Camera 18.63 11.55 8.10 6.22 8.62 22.88 18.90 16.26 14.43 16.53
OccWorld-F Camera 20.09 8.03 6.91 3.54 6.16 35.61 23.62 18.13 15.22 18.99
PreWorld Camera - 12.27 9.24 7.15 9.55 - 23.62 21.62 19.63 21.62
Ours-F Camera 37.38 10.34 8.66 6.98 8.66 38.92 25.81 23.19 19.97 22.99

Copy&Paste Occ 66.38 14.91 10.54 8.52 11.33 62.29 24.47 19.77 17.31 20.52
OccWorld-O Occ 66.38 25.78 15.14 10.51 17.14 62.29 34.63 25.07 20.18 26.63
Ours-O Occ 75.20 25.05 19.49 15.26 19.93 63.76 34.56 28.53 24.41 29.17

TABLE II: Quantitative Comparison of Occupancy Forecasting. Recon. refers to the performance of the scene tokenizer.
OccLLaMA achieves a competitive forecasting performance within 1-second interval and outperforms OccWorld within
3-second interval, highlighting its enhanced long-term forecasting capabilities.

benchmark. As shown in Figure 3, these results confirm the
effectiveness of pretraining in aligning the occupancy and
language modalities.

Occupancy Forecasting Accurate tokenization is crucial
for occupancy forecasting performance. In Table II, we
first compare our tokenizer with OccWorld [4], achieving
SOTA tokenization performance, with 14.5% improvement
in mIoU and 2.6% in IoU. This demonstrates that our
tokenizer design better captures scene details by addressing
the class imbalance. Table II further presents the occu-
pancy forecasting performance of OccLLaMA compared to
baseline models, OccWorld [4] and PreWorld [32], setting
with ground-truth occupancy (-O) input and predicted results
from FB-OCC predictor (-F) input. Our method achieves a
competitive performance within 1-second interval and out-
performs OccWorld within 3-second interval, highlighting its
enhanced long-term forecasting capabilities. Ours-F achieves
better IoU than the SOTA baseline PreWorld within 3-
second interval, demonstrating its potential as an end-to-end
world model. Notably, our method demonstrates scalability
for improvement through zero-cost replacement with better

predictors. In addition, Figure 4 further visualizes that our
method forecasts more accurate details for both static scenes
and dynamic objects.
Motion Planning In Table III, the motion planning per-
formance of our model is extensively compared with sev-
eral strong baselines, including end-to-end methods, LLM-
based methods, and world models. Without manual label
supervision or postprocessing, our method achieves SOTA
performance on the L2 metric and competitive performance
on the collision rate metric. In particular, OccLLaMA sig-
nificantly outperforms the SOTA occupancy world models,
OccWorld [4] and RenderWorld [33], under the settings of
occupancy ground truth input (-O) and raw images input (-F
or †) same as previous subsection. This highlights the effec-
tiveness of multi-task learning in enhancing the performance
of motion planning, which will be thoroughly discussed
in Section IV-C.

C. Effectiveness of Multi-Task Learning

To validate the effectiveness of multi-task learning in
enhancing the performance of motion planning, we conduct



Method Input Supervision L2(m)↓ Collision(%)↓
1s 2s 3s Avg. 1s 2s 3s Avg.

UniAD Camera Map&Box&Motion&Track&Occ 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31
VAD Camera Map&Box&Motion 0.54 1.15 1.98 1.22 0.04 0.39 1.17 0.53
OccNet Occ Map&Box 1.29 2.31 2.98 2.25 0.20 0.56 1.30 0.69

GPT-Driver Camera Map&Box&Motion&Track&Occ 0.27 0.74 1.52 0.84 0.07 0.15 1.10 0.44
OmniDrive Camera Box&Centerline 0.40 0.80 1.32 0.84 0.04 0.46 2.32 0.94

OccWorld-F Camera Occ 0.45 1.33 2.25 1.34 0.08 0.42 1.71 0.73
RenderWorld† Camera None 0.48 1.30 2.67 1.48 0.14 0.55 2.23 0.97
Ours-F Camera Occ 0.38 1.07 2.15 1.20 0.06 0.39 1.65 0.70

OccWorld-O Occ None 0.43 1.08 1.99 1.17 0.07 0.38 1.35 0.60
RenderWorld-O Occ None 0.35 0.91 1.84 1.03 0.05 0.40 1.39 0.61
Ours-O Occ None 0.25 0.64 1.50 0.80 0.03 0.37 0.96 0.45

TABLE III: Quantitative Comparison of Motion Planning. OccLLaMA achieves SOTA performance on L2 metric and
competitive results in collision rate metric without manual label supervision or postprocessing, compared to strong baselines
including end-to-end methods, LLM-based methods, and world models.

Model Pretraining Forecasting Understanding L2(m)↓ Collision(%)↓
1s 2s 3s Avg. 1s 2s 3s Avg.

M0 ✓ 0.61 1.39 2.27 1.42 0.14 0.68 1.96 0.93
M1 ✓ ✓ 0.37 1.02 2.03 1.14(↓0.28) 0.04 0.24 1.20 0.49(↓0.44)
M2 ✓ ✓ 0.30 0.71 1.47 0.82(↓0.60) 0.04 0.39 0.89 0.44(↓0.49)
M3 ✓ ✓ ✓ 0.25 0.64 1.50 0.80(↓0.62) 0.03 0.37 0.96 0.45(↓0.48)

TABLE IV: Effectiveness of Multi-Task Learning Comparative evaluation of M0 to M3 highlights the performance
improvements of motion planning achieved through occupancy forecasting and scene understanding tasks.

an extensive evaluation of OccLLaMA across various config-
urations fromM0 toM3, as detailed in Table IV.M0 serves
as the baseline, directly predicting future waypoints based
on the pretrained model. M1 extends M0 by incorporating
the occupancy forecasting task, enabling alternate prediction
of future occupancy scenes and waypoints. In M2, the
pretrained model is fine-tuned as outlined in Section III-C
to integrate the scene understanding task, thereby establish-
ing a chain-of-thought reasoning mechanism. Finally, M3

combines the alternate prediction strategy with the chain-of-
thought reasoning, providing a comprehensive evaluation.

Compared to the baseline, M1 achieves a modest reduc-
tion in L2 precision and substantial reduction in collision
rate, demonstrating its ability to enhance driving safety by
explicitly predicting the evolution of future scenes. M2

achieves a significant reduction in both L2 precision and col-
lision rate, demonstrating that the CoT reasoning driven by
scene understanding, enhances driving accuracy and human
alignment. M3 achieves a further reduction in L2 precision,
demonstrating that our model can effectively accommodate
various tasks without catastrophic forgetting, validating the
generality and robustness of the proposed multi-task learning
framework.

D. Ablation Study

Scene Tokenizer Parameters Table V evaluates the impact
of different hyper-parameters on tokenization performance of
the Scene Tokenizer, focusing on latent space resolution and
codebook size. The result shows that a smaller codebook fails
to capture scene distributions effectively, while a larger one
leads to overfitting due to inefficient codebook utilization.

Higher resolutions improve reconstruction accuracy but also
elevate the forecasting burden by increasing the number of
tokens required per scene. Based on these findings, we select
a resolution of 50 and codebook size of 2048 to balance
performance and computational efficiency.

Setting Reconstruction
Res. Size mIoU(%)↑ IoU(%)↑

25 2048 59.04 49.25
100 2048 79.18 66.36
50 1024 68.26 58.81
50 4096 70.94 61.03
50 2048 75.20 63.76

TABLE V: Ablation of Tokenizer Parameters. Res. refers
to latent space resolution.

Setting Forecasting Planning
s.a. a.t. mIoU(%)↑ IoU(%)↑ L2(m)↓ Coll.(%)↓

✓ ✓ 19.93 29.17 1.14 0.49
✓ 18.05 28.55 1.19 0.54

✓ 15.78 27.84 1.12 0.48

TABLE VI: Ablation of Model Components. s.a. refers to
spatial attention. a.t. refers to action tokenization.

Model Components We evaluate the impact of key compo-
nents of the unified world model on occupancy forecasting
and motion planning based on the pretrained model. As
illustrated in Table VI, the absence of spatial attention (w/o
s.a.) results in all tokens performing temporal attention akin
to the original LLM, while the absence of action tokeniza-



tion (w/o a.t.) replaces action-specific tokens with language
modality for waypoint representation. The results demon-
strate that action-specific tokens significantly enhance motion
planning performance by enabling explicit representation.
Furthermore, spatial attention proves essential for modeling
spatial dependencies within the occupancy scene, yielding
notable improvements in occupancy forecasting task.

V. CONCLUSION

We propose OccLLaMA, a unified occupancy-language-
action world model for understanding and generation tasks
in autonomous driving. By leveraging semantic occupancy
as a modality-agnostic 3D representation, OccLLaMA inte-
grates vision, language and action modalities into a single
auto-regressive framework, enabling end-to-end multi-task
learning. Furthermore, OccLLaMA constructs a human-like
motion planning process by integrating scene understanding
and occupancy forecasting. Extensive experiments demon-
strate the superior performance of OccLLaMA across scene
understanding, occupancy forecasting, and motion planning,
highlighting the effectiveness of multi-task learning and inte-
gration in improving driving performance. In the future, we
will explore quantization methods to address the inference
delay caused by a large number of parameters.
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